Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor
ثبت نشده
چکیده
منابع مشابه
Computational study of bandgap-engineered Graphene nano ribbon tunneling field-effect transistor (BE-GNR-TFET)
By applying tensile local uniaxial strain on 5 nm of drain region and compressive local uniaxial strain on 2.5 nm of source and 2.5 nm of channel regions of graphene nanoribbon tunneling field-effect transistor (GNR-TFET), we propose a new bandgap-engineered (BE) GNR-TFET. Simulation of the suggested device is done based on non-equilibrium Green’s function (NEGF) method by a mode-space approach...
متن کاملA Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor
Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...
متن کاملAnalytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications
Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective ma...
متن کاملTrilayer Graphene Nanoribbon Field Effect Transistor Analytical Model
The approaching scaling of Field Effect Transistors (FETs) in nanometer scale assures the smaller dimension, low-power consumption, very large computing power, low energy delay product and high density as well as high speed in processor. Trilayer graphene nanoribbon with different stacking arrangements (ABA and ABC) indicates different electrical properties. Based on this theory, ABA-stacked tr...
متن کاملGraphene Nano-Ribbon Field Effect Transistor under Different Ambient Temperatures
This paper is the first study on the impact of ambient temperature on the electrical characteristics and high frequency performances of double gate armchair graphene nanoribbon field effect transistor (GNRFET). The results illustrate that the GNRFET under high temperature (HT-GNRFET) has the highest cut-off frequency, lowest sub-threshold swing, lowest intrinsic delay and power delay product co...
متن کامل